Part Number Hot Search : 
AP4578GH PN4091 A8180SLU 05351 6718V BJ100 MAX13 TDA1170N
Product Description
Full Text Search
 

To Download TSH300 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TSH300
Ultra Low-Noise High-Speed Operational Amplifier

Structure: VFA 200 MHz bandwidth Input noise: 0.65 nV/Hz Stable for gains > 5 Slew rate: 230 V/s Specified on 100 load Tested on 5 V power supply Single or dual supply operation Minimum and maximum limits are tested in full production
Pin Connections (top view)
OUT 1 -VCC 2 +IN 3 SOT23-5
5 +VCC
+4 -IN
Description
The TSH300 is a voltage feedback amplifier featuring ultra-low input voltage and current noise. This feature, associated with a large bandwidth, large slew rate and a good linearity, makes the TSH300 a good choice for high-speed data acquisition systems where sensitivity and signal integrity are the main priorities. The TSH300 is a single operator available in SO8 and the tiny SOT23-5L plastic package, saving board space as well as providing excellent thermal performances.
NC 1
8 NC _ + 7 +VCC 6 5 NC SO8
Applications

-IN 2 +IN 3 -VCC 4
High speed data acquisition systems Probe equipment Communication & video test equipment Medical instrumentation ADC drivers
Order Codes
Part Number TSH300ILT TSH300ID TSH300IDT -40C to +85C Temperature Range Package SOT23-5L SO-8 SO-8 Packing Tape & Reel Tube Tape & Reel Marking K308 TSH300I TSH300I Rev. 2 1/18
www.st.com
18
September 2005
Absolute Maximum Ratings
TSH300
1
Absolute Maximum Ratings
Table 1.
Symbol VCC Vid Vin Toper Tstg Tj R thja Supply Voltage (1) Differential Input Voltage(2) Input Voltage Range(3) Operating Free Air Temperature Range Storage Temperature Maximum Junction Temperature Thermal Resistance Junction to Ambient SOT23-5L SO8 Thermal Resistance Junction to Case SOT23-5L SO8 Maximum Power Dissipation(4) (@Ta=25C) for Tj=150C SOT23-5L SO8 HBM: Human Body Model (5) (all packages) ESD MM: Machine Model (6) (all packages) CDM: Charged Device Model (SO8) Latch-up Immunity
1. All voltage values are measured with respect to the ground pin. 2. Differential voltage is between the non-inverting input terminal and the inverting input terminal. 3. The magnitude of input and output voltage must never exceed VCC +0.3V. 4. Short-circuits can cause excessive heating. Destructive dissipation can result from short circuits on amplifiers. 5. Human body model, 100pF discharged through a 1.5k resistor into Pmin of device. 6. This is a minimum value. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with no external series resistor (internal resistor < 5), into pin to pin of device.
Key parameters and their absolute maximum ratings
Parameter Value 6 +/-0.5 +/-2.5 -40 to +85 -65 to +150 150 250 150 80 28 500 830 1 150 1.5 200 Unit V V V C C C C/W
R thjc
C/W
Pmax
mW kV V kV mA
Table 2.
Symbol VCC Vicm
Operating conditions
Parameter Supply Voltage (1) Common Mode Input Voltage Value 4.5 to 5.5 -1.5 to +1.6 Unit V V
1. Tested in full production at 5V (2.5V) supply voltage.
2/18
TSH300
Electrical Characteristics
2
Table 3.
Symbol
Electrical Characteristics
Electrical characteristics for VCC = 2.5V, Tamb = 25C (unless otherwise specified)
Parameter Test Condition DC performance Vio Vio Iib+ IibCMR SVR Input Offset Voltage Offset Voltage between both inputs Vio drift vs. Temperature Non Inverting Input Bias Current DC current necessary to bias the input + Inverting Input Bias Current DC current necessary to bias the input Common Mode Rejection Ratio 20 log (Vic/Vio) Supply Voltage Rejection Ratio 20 log (Vcc/Vio) Power Supply Rejection Ratio 20 log (Vcc/Vout) Positive Supply Current DC consumption with no input signal Tamb Tmin. < Tamb < Tmax. Tmin. < Tamb < Tmax. Tamb Tmin. < Tamb < Tmax. Tamb Tmin. < Tamb < Tmax. Vic = 1V Tmin. < Tamb < Tmax. Vcc= 3.5V to 5V Tmin. < Tamb < Tmax. Gain = +5, Vcc=100mV at 1kHz No load Tmin. < Tamb < Tmax. 70 60 -46 -1.8 0.5 0.5 -3.8 30 33 -30 -34 88 83 77 74 76 15 15.3 19.5 46 1.8 mV V/C A A dB dB dB mA Min. Typ. Max. Unit
PSRR ICC
Dynamic performance and output characteristics AVD Open Loop Gain Output Voltage/Input Voltage Gain in open loop of a VFA. Bandwidth Frequency where the gain is 3dB below the DC gain Gain Flatness @ 0.1dB Band of frequency where the gain variation does not exceed 0.1dB SR RL = 100 out = 1V ,V Tmin. < Tamb < Tmax. Small Signal V out=20mVp-p RL = 100 Gain = +5 Gain = +20 Small Signal Vout=20mVp-p Gain = +5 65 67 66 dB dB
Bw
30
200 43 160
MHz
Slew Rate Vout = 2Vp-p, Gain = +20, Maximum output speed of sweep in large RL = 100 signal High Level Output Voltage Low Level Output Voltage RL = 100 Tmin. < Tamb < Tmax. RL = 100 Tmin. < Tamb < Tmax.
160 1.39
230 1.45 1.46 -1.45 -1.46 -1.39
V/s V V
VOH VOL
Iout
Output to GND Isink Short-circuit output current entering op-amp. Tmin. < Tamb < Tmax. Isource Output current coming out of the op-amp. Output to GND Tmin. < Tamb < Tmax.
44
77 78 -82 -78 -44 mA
3/18
Electrical Characteristics
Table 3.
Symbol
TSH300
Electrical characteristics for VCC = 2.5V, Tamb = 25C (unless otherwise specified)
Parameter Test Condition Noise and distortion Min. Typ. Max. Unit
eN iN
Equivalent Input Noise Voltage see application note on page 13 Equivalent Input Noise Current (+) see application note on page 13 Spurious Free Dynamic Range The highest harmonic of the output spectrum when injecting a filtered sine wave
F = 100kHz F = 100kHz
0.65 3.3
0.77(1) nV/Hz 5.5(1) pA/Hz
SFDR
Vout = 2Vp-p, Gain = +5, RL = 100 F = 10MHz ,
55
dBc
1. This parameter is guaranteed by design and evaluated using corner lots. This value is not tested in full production.
4/18
Electrical Characteristics
Figure 1.
20
TSH300
Figure 2.
25
Frequency response G=+5, SO8
Frequency response G=+7.8, SO8
15
20
Gain (dB)
Gain (dB)
Vcc=+5V SO8 Gain=+5 (Rfb=200/Rg=50) Vin=64mVp-p Load=100
1M 10M 100M 1G
10
15
5
10
0
5
-5 100k
Vcc=+5V SO8 Gain=+7.8 (Rfb=680/Rg=100) Vin=64mVp-p Load=100
1M 10M 100M 1G
0 100k
Frequency (Hz)
Frequency (Hz)
Figure 3.
25
Frequency response G=+10.2, SO8
Figure 4.
30
Frequency response G=+19.9, SO8
20
25
10
Gain (dB)
Gain (dB)
15
20
15
5
Vcc=+5V SO8 Gain=+10.1 (Rfb=910/Rg=100) Vin=64mVp-p Load=100
1M 10M 100M 1G
10
Vcc=+5V SO8 Gain=+19.9 (Rfb=510/Rg=27) Vin=64mVp-p Load=100
1M 10M 100M 1G
0 100k
5 100k
Frequency (Hz)
Frequency (Hz)
Figure 5.
20
Frequency response G=-5, SO8
Figure 6.
20
Frequency response G=-7.8, SO8
15
15
Gain (dB)
5
Gain (dB)
Vcc=+5V SO8 Gain= -5 (Rfb=270//1pF, Rg=43) Vin=64mVp-p Load=100
1M 10M 100M 1G
10
10
5
0
0
Vcc=+5V SO8 Gain= -7.8 (Rfb=390//1pF, Rg=43) Vin=64mVp-p Load=100
1M 10M 100M 1G
-5 100k
-5 100k
Frequency (Hz)
Frequency (Hz)
5/18
Electrical Characteristics
Figure 7.
30
TSH300
Figure 8.
30
Frequency response G=-10.2, SO8
Frequency response G=-19.9, SO8
25
25
Gain (dB)
20
Gain (dB)
20
15
15
10
Vcc=+5V SO8 Gain= -10.2 (Rfb=510//1pF, Rg=43) Vin=64mVp-p Load=100
1M 10M 100M 1G
10
Vcc=+5V SO8 Gain= -20 (Rfb=1k//1pF, Rg=47) Vin=64mVp-p Load=100
1M 10M 100M 1G
5 100k
5 100k
Frequency (Hz)
Frequency (Hz)
Figure 9.
20
Frequency response G=+5, SOT23-5L
Figure 10. Frequency response G=+7.8, SOT23-5L
20
15
15
Gain (dB)
5
Gain (dB)
Vcc=+5V SOT23-5 Gain=+5 (Rfb=200/Rg=50) Vin=64mVp-p Load=100
1M 10M 100M 1G
10
10
5
0
0
Vcc=+5V SOT23-5 Gain=+7.8 (Rfb=680/Rg=100) Vin=64mVp-p Load=100
1M 10M 100M 1G
-5 100k
-5 100k
Frequency (Hz)
Frequency (Hz)
Figure 11. Frequency response G=+10.1, SOT23-5L
25
Figure 12. Frequency response G=+19.9, SOT23-5L
30
20
25
Gain (dB)
15
Gain (dB)
Vcc=+5V SOT23-5 Gain=+10.1 (Rfb=910/Rg=100) Vin=64mVp-p Load=100
1M 10M 100M 1G
20
10
15
5
10
Vcc=+5V SOT23-5 Gain=+19.9 (Rfb=510/Rg=27) Vin=64mVp-p Load=100
1M 10M 100M 1G
0 100k
5 100k
Frequency (Hz)
Frequency (Hz)
6/18
Electrical Characteristics
Figure 13. Gain flatness, G=+5, SO8
14,2
TSH300
Figure 14. Gain flatness, G=+7.8, SO8
18,0
14,0
17,8
Gain (dB)
Gain (dB)
13,8
17,6
13,6
17,4
13,4
Vcc=+5V SO8 Gain=+5 (Rfb=200/Rg=50) Vin=64mVp-p Load=100
1M 10M 100M 1G
17,2
Vcc=+5V SO8 Gain=+7.8 (Rfb=680/Rg=100) Vin=64mVp-p Load=100
100k 1M 10M 100M
13,2 100k
17,0 10k
Frequency (Hz)
Frequency (Hz)
Figure 15. Gain flatness, G=+10.2, SO8
20,4
Figure 16. Gain flatness, G=+19.9, SO8
26,2
20,2
26,0
Gain (dB)
Gain (dB)
20,0
25,8
19,8
19,6
Vcc=+5V SO8 Gain=+10.1 (Rfb=910/Rg=100) Vin=64mVp-p Load=100
100k 1M 10M 100M
25,6
25,4
Vcc=+5V SO8 Gain=+19.9 (Rfb=510/Rg=27) Vin=64mVp-p Load=100
100k 1M 10M 100M
10k
10k
Frequency (Hz)
Frequency (Hz)
Figure 17. Gain flatness, G=+5, SOT23-5L
14,2
Figure 18. Gain flatness, G=+7.8, SOT23-5L
18,0
17,8
14,0
Gain (dB)
Gain (dB)
Vcc=+5V SOT23-5 Gain=+5 (Rfb=200/Rg=50) Vin=64mVp-p Load=100
1M 10M 100M 1G
17,6
13,8
17,4
13,6
17,2
13,4
Vcc=+5V SOT23-5 Gain=+7.8 (Rfb=680/Rg=100) Vin=64mVp-p Load=100
100k 1M 10M 100M
100k
17,0 10k
Frequency (Hz)
Frequency (Hz)
7/18
Electrical Characteristics
Figure 19. Gain flatness, G=+10.1, SOT23-5L
20,4
TSH300
Figure 20. Gain flatness, G=+19.9, SOT23-5L
26,2
20,2
26,0
Gain (dB)
20,0
Gain (dB)
Vcc=+5V SOT23-5 Gain=+10.1 (Rfb=910/Rg=100) Vin=64mVp-p Load=100
100k 1M 10M 100M
25,8
19,8
25,6
19,6
25,4
Vcc=+5V SOT23-5 Gain=+19.9 (Rfb=510/Rg=27) Vin=64mVp-p Load=100
100k 1M 10M 100M
10k
10k
Frequency (Hz)
Frequency (Hz)
Figure 21. Input voltage noise
5,0 4,5 4,0 3,5
Figure 22. Input voltage noise (corner lot)
1,0 0,9 0,8 0,7
en (nV/VHz)
2,5 2,0 1,5 1,0 0,5 0,0 100
en (nV/VHz)
3,0
Gain=26dB Rg=27 Rfb=510 non-inverting input in short-circuit Vcc=+5V
Max.
0,6 0,5 0,4 0,3 0,2 0,1
Typ.
Gain=26dB Rg=27 Rfb=510 non-inverting input in short-circuit Vcc=+5V
1k 10k 100k 1M 10M
1k
10k
100k
1M
10M
0,0 100
Frequency (Hz)
Frequency (Hz)
Figure 23. Input current noise
30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 100 1k 10k 100k 1M 10M
Figure 24. Input current noise (corner lot)
8 7 6 5
Gain=26dB Rg=27 Rfb=510 1000 to GND on non-inverting input Vcc=+5V
Max.
in (pA/VHz)
in (pA/VHz)
Typ.
4 3 2 1 0 100
Gain=26dB Rg=27 Rfb=510 1000 to GND on non-inverting input Vcc=+5V
1k 10k 100k 1M 10M
Frequency (Hz)
Frequency (Hz)
8/18
Electrical Characteristics
Figure 25. Distortion vs. Vout, SO8
-20 -25 -30 -35 -40
TSH300
Figure 26. Distortion vs. Vout, SOT23-5L
-20 -25 -30 -35 -40
HD2 & HD3 (dBc)
-45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 0 1 2 3 4
HD2 & HD3 (dBc)
-45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 0 1 2 3 4
HD2
HD3
HD3
Vcc=+5V Gain=+5, Rfb=200 S08 F=10MHz Load=100
HD2
Vcc=+5V Gain=+5, Rfb=200 SOT23-5 F=10MHz Load=100
Output Amplitude (Vp-p)
Output Amplitude (Vp-p)
Figure 27. Slew-rate
2,0
Figure 28. Reverse isolation vs. frequency
0
Output Response (V)
-20
1,5
Isolation (dB)
Vcc=+5V SO8/SOT23-5 Gain=+5 (Rfb=200) Load=100
0 2 4 6 8 10 12 14
-40
1,0
-60
0,5
-80
0,0
Vcc=+5V Small Signal SO8/SOT23-5 Load=100
1M 10M 100M 1G
-100 100k
Time (ns)
Frequency (Hz)
Figure 29. Quiescent current vs. Vcc
15
Icc(+)
Figure 30. Vout max vs. Vcc
5 4
10
5
0
-5
Vcc=+5V SO8/SOT23-5 Gain=+5 (Rfb=200) Input to mid-supply (+2.5V) no load
Vout max. (Vp-p)
3
Icc (mA)
2
1
0
-10
Icc(-)
-1
-15 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 -2 0 1 2 3
Vcc=+5V SO8/SOT23 Gain=+5 (Rfb=200) F=10MHz Load=100
4 5
Vcc (V)
Frequency (Hz)
9/18
Electrical Characteristics
Figure 31. Vio vs. temperature
1,0 0,9 0,8 20 0,7 10
TSH300
Figure 32. Ibias vs. temperature
40 30
Ib(+)
VIO (mV)
IBIAS (A)
0,6 0,5 0,4 0,3
0 -10 -20
0,2 0,1 -30
Ib(-)
Vcc=+5V
0,0 -40 -20 0 20 40 60 80 100 120 -40 -40 -20 0 20 40 60 80
Vcc=+5V
100 120
Temperature (C)
Temperature (C)
Figure 33. Supply current vs. temperature
20 15
Icc(+)
Figure 34. AVD vs. temperature
80 78 76 74
10 5
-5 -10
Icc(-)
AVD (dB)
Vcc=+5V no Load In+/In- to GND
-40 -20 0 20 40 60 80 100 120
ICC (mA)
0
72 70 68 66 64 62 60 -40 -20 0 20 40 60 80 100 120
-15 -20 -25 -30
Vcc=+5V
Temperature (C)
Temperature (C)
Figure 35. Output rails vs. temperature
2 1
VOH
Figure 36. Iout vs. temperature
100 80 60 40 20
Isource
0
VOH & OL (V)
-1 -2 -3
Iout (mA)
0 -20 -40 -60 -80 -100
Isink
VOL
-4
Vcc=+5V Load=100
-20 0 20 40 60 80
-120 -140 -160
Vcc=+5V Output: short-circuit
-40 -20 0 20 40 60 80 100 120
-5 -40
Temperature (C)
Temperature (C)
10/18
Electrical Characteristics
Figure 37. CMR vs. temperature
100 98 96 94
TSH300
Figure 38. Bandwidth vs. temperature
70 65 60 55
CMR (dB)
92 90 88 86 84 82 80 -40 -20 0 20 40 60 80 100 120
Bw (MHz)
50 45 40 35 30
Vcc=+5V
25 20
Vcc=+5V Gain=+20 Load=100
-40 -20 0 20 40 60 80 100 120
Temperature (C)
Temperature (C)
Figure 39. Slew-rate vs. temperature
280
Figure 40. Isink
90 80
260
Slew Rate (V/s)
70 60
Isink (mA)
240
SR+ SR-
50
+2.5V
220
40
+
VOL
without load
30 200
-1V
_
- 2.5V RG
Isink V
Vcc=+5V Gain=+20 Load=100
-40 -20 0 20 40 60 80 100 120
20 10 0 -2,0
Amplifier in open loop without load
180
-1,5
-1,0
-0,5
0,0
Temperature (C)
Vout (V)
Figure 41. SVR vs. temperature
90 85 80
Figure 42. Isource
0
+2.5V
-10 -20 -30 -40 -50 -60 -70 -80 -90 0,0
+1V
VOH
+
_
- 2.5V RG
without load
Isource V
SVR (dB)
75 70 65 60 55
Isource (mA)
Amplifier in open loop without load
Vcc=+5V
50 -40 -20 0 20 40 60 80 100 120
0,5
1,0
1,5
2,0
Temperature (C)
Vout (V)
11/18
Power Supply Considerations
TSH300
3
Power Supply Considerations
Correct power supply bypassing is very important for optimizing performance in high-frequency ranges. Bypass capacitors should be placed as close as possible to the IC pins to improve high-frequency bypassing. A capacitor greater than 1F is necessary to minimize the distortion. For better quality bypassing, a capacitor of 10nF can be added using the same implementation conditions. Bypass capacitors must be incorporated for both the negative and the positive supply. Figure 43. Circuit for power supply bypassing
+VCC + 10nF 10microF
+ 10nF
10microF + -VCC
12/18
Evaluation Boards
TSH300
4
Evaluation Boards
An evaluation board kit optimized for high-speed operational amplifiers is available (order code: KITHSEVAL/STDL). The kit includes the following evaluation boards, as well as a CD-ROM containing datasheets, articles, application notes and a user manual:

SOT23_SINGLE_HF BOARD: Board for the evaluation of a single high-speed op-amp in SOT23-5L package. SO8_SINGLE_HF: Board for the evaluation of a single high-speed op-amp in SO8 package. SO8_DUAL_HF: Board for the evaluation of a dual high-speed op-amp in SO8 package. SO8_S_MULTI: Board for the evaluation of a single high-speed op-amp in SO8 package in inverting and non-inverting configuration, dual and single supply. SO14_TRIPLE: Board for the evaluation of a triple high-speed op-amp in SO14 package with video application considerations. 2 layers FR4 (r=4.6) epoxy 1.6mm copper thickness: 35m
Board material description:

Figure 44. Evaluation kit for high-speed op-amps
13/18
Noise Measurements
TSH300
5
Noise Measurements
The noise model is shown in Figure 45, where:

eN: input voltage noise of the amplifier iNn: negative input current noise of the amplifier iNp: positive input current noise of the amplifier
Figure 45. Noise model
+
R3
iN+
_
output HP3577 Input noise: 8nV/Hz
N3
iN-
eN
N2
R1
R2
N1
The thermal noise of a resistance R is:
4kTRF
where F is the specified bandwidth. On a 1Hz bandwidth the thermal noise is reduced to
4kTR
where k is the Boltzmann's constant, equal to 1,374.10-23J/K. T is the temperature (K). The output noise eNo is calculated using the Superposition Theorem. However eNo is not the simple sum of all noise sources, but rather the square root of the sum of the square of each noise source, as shown in Equation 1:
eNo = 2 2 2 2 2 2 V1 + V2 + V3 + V4 + V5 + V6
(Equation 1)
eNo
2
2 2 2 2 2 2 2 = eN x g + iNn x R2 + iNp x R3 x g
+ ( ------- ) R1
R2 2
2 x 4kTR1 + 4kTR2 + g x 4kTR3
(Equation 2)
14/18
Noise Measurements
TSH300
The input noise of the instrumentation must be extracted from the measured noise value. The real output noise value of the driver is:
eNo = 2 2 ( Measured ) - ( instrumentation )
(Equation 3)
The input noise is called the Equivalent Input Noise as it is not directly measured but is evaluated from the measurement of the output divided by the closed loop gain (eNo/g). After simplification of the fourth and the fifth term of Equation 2 we obtain:
eNo 2 2 2 2 2 2 2 2 = eN x g + iNn x R2 + iNp x R3 x g
+ g x 4kTR2 + g2 x 4kTR3
(Equation 4)
Measurement of the input voltage noise eN
If we assume a short-circuit on the non-inverting input (R3=0), from Equation 4 we can derive:
eNo = 2 2 2 2 eN x g + iNn x R2 + g x 4kTR2
(Equation 5)
In order to easily extract the value of eN, the resistance R2 will be chosen to be as low as possible. In the other hand, the gain must be large enough: R3=0, gain: g=100
Measurement of the negative input current noise iNn
To measure the negative input current noise iNn, we set R3=0 and use Equation 5. This time the gain must be lower in order to decrease the thermal noise contribution: R3=0, gain: g=10
Measurement of the positive input current noise iNp
To extract iNp from Equation 3, a resistance R3 is connected to the non-inverting input. The value of R3 must be chosen in order to keep its thermal noise contribution as low as possible against the iNp contribution: R3=100, gain: g=10
15/18
Package Mechanical Data
TSH300
6
Package Mechanical Data
In order to meet environmental requirements, ST offers these devices in ECOPACK(R) packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.
6.1
SOT23-5L package
SOT23-5L MECHANICAL DATA
mm. DIM. MIN. A A1 A2 b C D E E1 e e1 L 0.35 0.90 0.00 0.90 0.35 0.09 2.80 2.60 1.50 0 .95 1.9 0.55 13.7 TYP MAX. 1.45 0.15 1.30 0.50 0.20 3.00 3.00 1.75 MIN. 35.4 0.0 35.4 13.7 3.5 110.2 102.3 59.0 37.4 74.8 21.6 TYP. MAX. 57.1 5.9 51.2 19.7 7.8 118.1 118.1 68.8 mils
16/18
Package Mechanical Data
TSH300
6.2
SO8 package
SO-8 MECHANICAL DATA
DIM. A A1 A2 B C D E e H h L k ddd 0.1 5.80 0.25 0.40 mm. MIN. 1.35 0.10 1.10 0.33 0.19 4.80 3.80 1.27 6.20 0.50 1.27 8 (max.) 0.04 0.228 0.010 0.016 TYP MAX. 1.75 0.25 1.65 0.51 0.25 5.00 4.00 MIN. 0.053 0.04 0.043 0.013 0.007 0.189 0.150 0.050 0.244 0.020 0.050 inch TYP. MAX. 0.069 0.010 0.065 0.020 0.010 0.197 0.157
0016023/C
17/18
Revision History
TSH300
7
Revision History
Date Revision Description of Changes
Sept. 2005 Sept. 2005
1 2
Release of mature product datasheet Update to ESD information in Table 1 on page 2.
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners (c) 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
18/18


▲Up To Search▲   

 
Price & Availability of TSH300

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X